Theory and Implementation of Numerical Methods Based on Runge-kutta Integration for Solving Optimal Control Problems

ثبت نشده
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theory and Implementation of Numerical Methods Based on Runge-Kutta Integration for Solving Optimal Control Problems

THEORY AND IMPLEMENTATION OF NUMERICAL METHODS BASED ON RUNGE-KUTTA INTEGRATION FOR SOLVING OPTIMAL CONTROL PROBLEMS

متن کامل

Time integration of rectangular membrane free vibration using spline-based differential quadrature

In this paper, numerical spline-based differential quadrature is presented for solving the boundary and initial value problems, and its application is used to solve the fixed rectangular membrane vibration equation. For the time integration of the problem, the Runge–Kutta and spline-based differential quadrature methods have been applied. The Runge–Kutta method was unstable for solving the prob...

متن کامل

Fad and Spg for Optimal Control

Automatic diierentiation and nonmonotone spectral projected gradient techniques are used for solving optimal control problems. The original problem is reduced to a nonlinear programming one using general Runge-Kutta integration formulas. Canonical formulas which use a fast automatic diierentiation strategy are given to compute derivatives of the objective function. On the basis of this approach...

متن کامل

Automatic Differentiation and Spectral Projected Gradient Methods for Optimal Control Problems

Automatic differentiation and nonmonotone spectral projected gradient techniques are used for solving optimal control problems. The original problem is reduced to a nonlinear programming one using general Runge-Kutta integration formulas. Canonical formulas which use a fast automatic differentiation strategy are given to compute derivatives of the objective function. On the basis of this approa...

متن کامل

Symplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects

In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996